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Overview

• Prompt Neutron Decay Constant
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• Results
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Prompt Neutron Decay Constants

• Rate at which the prompt 
neutron population decays as a 
function of time.

• At DC comprises the 
fundamental α-eigenvalue.

• Useful for neutron spectrum 
hardness comparisons in 
critical experiments.

• Useful for determining neutron 
lifetime of a system.

• Used to measure subcritical 
reactivity in a system.

Assembly αDC

Lady Godiva -1.1x106

Godiva IV -8.4x105

Topsy (Oy(94) w/ 
NU reflector)

-3.7x105

Zeus -8.9x104

Zeus LEU Lead -5.6x104

Zeus HEU Lead -3.8x104

Sheba -200
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Innovation

• Prompt neutron decay constant measurements (Rossi- α, pulsed 
neutron source, etc.) can be used to determine subcritical reactivity.

• Users of subcritical systems (example ADS) are interested in real time 
measurement of subcritical reactivity.

• These methods rely on the assumptions made during derivation of 
point reactor kinetics equations.
o Namely the separability of the spatial and time neutron fluxes.
o Near critical time dependent flux is constant and separable.

• The experimental determination of this point is the goal of this work.
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Theory - Fission

• Fission is the splitting of an 
atom to create several daughter 
nuclei, neutrons, and other 
particles.

• Fission chains occur when 
neutrons released by one 
fission create another fission.

• Effective multiplication factor 
keff describes whether the 
fission rate in a system is 
growing or dissipating.
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Theory – Fission cont.

• A critical system has a constant 
fission rate.
o Each n0 in generation i is 

replaced by one n0 in generation 
i+1.

• A typical fission reaction is:
o 𝟐𝟐𝟐𝟐𝟐𝟐𝑼𝑼 + 𝒏𝒏𝟎𝟎 → 𝟐𝟐𝟐𝟐𝟐𝟐𝑼𝑼∗ → 𝒇𝒇𝒇𝒇 + 𝒏𝒏𝟎𝟎𝒔𝒔 + 𝒐𝒐𝒐𝒐

• ff = fission fragments
• op = other particles
• Total energy on the RHS is ~200MeV
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Theory – Types of Neutrons

Prompt Neutrons
• Emitted directly during fission 

process.
o ~10-14 seconds after fission 

event
• ~1 MeV of energy.

Delayed Neutrons
• Emitted by daughter nuclei 

(fission fragments) as a nuclear 
decay from a metastable state.

• Occur milliseconds to seconds 
after fission.

• keV level of energy.
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Theory – Effect of Delayed Neutrons on Criticality

• A chain reaction sustained only 
by prompt neutrons is called 
prompt critical.

• The prompt multiplication 
factor kp is a measure of how 
the prompt fission rate grows 
or dissipates similarly to keff
which considers all neutrons.

• A critical chain with all 
neutrons considered is called 
delayed critical.
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Theory – Effect of Delayed Neutrons on Criticality cont.

• To relate kp and keff , the fraction of delayed neutrons in comparison to 
the overall population needs to be defined.

• The delayed neutron fraction is β.
• Energy difference between prompt and delayed neutrons means they 

have different probability to induce fission. 
• To correct for this, an effective neutron fraction is created, βeff .
• At prompt keff ≈ 1 + βeff .
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Theory – Reactivity

• Reactivity is a measure of how 
far a system is away from 
delayed critical.

o 𝜌𝜌$ = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒

o Has units of dollars and cents
o Prompt critical = 1$
o Delayed critical = 0$
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Theory – Prompt Neutron Decay Constant

• The prompt neutron decay 
constant α is the rate at which 
the prompt neutron population 
changes as a function of time.

• 𝜶𝜶 = 𝒌𝒌𝒐𝒐−𝟏𝟏
𝒍𝒍

• At delayed critical, this 
constant is the α-eigenvalue of 
the system.

• 𝜶𝜶𝑫𝑫𝑫𝑫 = −𝜷𝜷
𝒍𝒍

• At prompt critical α =0. 0
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Theory – Prompt Neutron Decay Constant cont.

Correlated Neutrons
• Neutrons that have a common 

fission ancestor. 
• Must all be prompt neutrons.
Accidental Neutrons
• Neutrons that do not have a 

common fission ancestor.
• Include delayed neutrons, 

source neutrons, and prompt 
neutrons from different fission 
chains.
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Theory – Prompt Neutron Decay Constant cont.

• The prompt neutron decay 
constant is calculated by 
measuring the correlations 
between neutrons emitted by a 
fissioning system.

• Rossi-α is an autocorrelation of 
neutron detection events. 
o Combination of the probability of 

detecting a neutron from a 
fission chain and also detecting 
a second neutron from that 
same chain.

• 𝒐𝒐 𝒕𝒕 = 𝑨𝑨 + 𝑩𝑩𝒆𝒆𝜶𝜶𝒕𝒕

o A is related to the population of 
accidental neutrons. 
• Typically related to the source and 

multiplication of the system.

o B is related to the population of 
correlated neutrons.
• The probability of detecting correlated 

neutrons drops exponentially with time 
(if the system is below prompt critical), 
so the exponential term is included 
with the correlated term.
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Theory – Determine α-eigenvalue

• The α-eigenvalue can be 
determined two ways.
o Direct measurement at delayed 

critical.
o Inference using two or more 

subcritical data points.
• Plot α versus the inverse count rate. 
• The y-intercept is the α-eigenvalue.
• Example shown on the right.
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Theory – Determine Reactivity from α

• Reactivity is calculated from α
using the α-eigenvalue and the 
known value of reactivity and α
at prompt critical (ρ=1, α=0).

• 𝝆𝝆 = 𝜶𝜶𝑫𝑫𝑫𝑫−𝜶𝜶
𝜶𝜶𝑫𝑫𝑫𝑫
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Experiment – Critical Assemblies 

Godiva IV
• Fast metal critical assembly.
• Designed for fast burst 

operations.
• Fuel is about the size of a 

coffee can. (7 in. diameter, 6 in. 
height)

• 65 kg of 93.5% enriched 235U.
• Control elements are 235U and 

control the amount of mass to 
adjust reactivity.
o Three reactivity control elements 

• One Safety Block (coarse control)
• Two Control Rods (fine control)

o One pneumatic “burst rod”
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Experiment – Critical Assemblies cont.
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Experiment – Critical Assemblies cont.

Polyethylene Class Foils 
• Thermal metal critical assembly.
• Designed to mimic solution with 

minimum critical mass.
• Fuel consists of 3 mil thick foils 

of 93% enriched 235U weighing 
approximately 69 grams each.

• ~1 kg of material in clean critical 
configuration.

• On Planet critical assembly:
o Reactivity controlled through 

separation of two subcritical 
masses.
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Experiment – Critical Assemblies cont.

• The experiment was modified to 
hold the detection equipment 
near the center of the core.

• This change included a special 
plate which contained holes to 
hold the detectors.

• A drawing of this plate is shown 
on the right.

• The net reactivity change on the 
system is approximately 2 
dollars subcritical. 
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Experiment – Critical Assemblies cont.
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Experiment – Critical Assemblies cont.

• Once a critical configuration 
was established. The keff of 
each expected configuration 
can be estimated using the 
O’Dell relation.

o 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 ≈
𝑚𝑚
𝑚𝑚𝑐𝑐

0.25

# of Units keff ρ ($) α (1/s)

15 0.995 -0.59 -317.4

14 0.978 -2.65 -727.6

13 0.96 -4.9 -1176.2

12 0.941 -7.38 -1670.1

11 0.921 -10.12 -2218.3

10 0.899 -13.21 -2832.7

9 0.876 -16.7 -3529.1

8 0.85 -20.71 -4329.6

7 0.822 -25.41 -5266.1

6 0.791 -31.03 -6386.9

5 0.756 -37.96 -7769.5
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Experiment – Critical Assemblies cont.
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Experiment – Critical Assemblies cont.
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Experiment – Neutron Detection System

• Consists of largely commercial 
off the shelf equipment.

• List-mode module is custom 
LANL designed and built 
module.
o Time tags detection events.
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Experiment – Neutron Detection System cont.
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Experiment – Neutron Detection System cont.

• Detector is Reuter-Stokes 40 
atm 0.25” diameter, 4” long 3He 
detector.
o Other detectors could be used.
o Chosen because of its fast 

recovery and size.
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Experiment – Neutron Sources

• Two different sources used 
during these measurements.
o DT generator

• 14 MeV neutrons 
• 50 Hz
• 106 neutrons per pulse

o 252Cf source
• Spontaneous fission source
• 105 neutrons per second
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Experiment – Execution

• The Rossi-α Method utilizes 
time correlations between 
neutron detection events to 
derive the time constant of a 
chain reacting system.

• Measurements executed using 
a neutron source(s).
o Godiva IV – DT source placed 

on far side of fuel with respect to 
the detectors.

o Polyethylene Class Foils- Cf-252 
Source placed in bottommost 
unit of each configuration.

• List-mode data was collected on 
steady-state neutron 
populations of various 
configurations. 

o Godiva IV – 50, 100, 150 cents 
subcritical.

o Polyethylene Class Foils – 15, 
14, 13, 12, 11, 10, and 5 units.
• Measurements also completed as a 

function of separation from critical at 
34, 63, and 94 mils w/ foils.

• Not used for reactivity study because 
of potential variability in the positioning. 
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Experiment – Execution cont.
Godiva IV
• Three measurements were 

attempted using the pulsed 
source technique.
o Pulsed source was used in an 

attempt to maximize signal to 
noise ratio.

o Three measurements taken at 
50, 100, and 150 cents 
subcritical.

• Measurements did not provide 
sufficient statistics to even 
determine the α-eigenvalue.

• Measurements would require a 
new detection system and proof 
testing of the new system.

Polyethylene Class Foils
• Three measurements completed 

using separation of the critical 
configuration (34, 63, and 94 
mils).

o Used to determine the α-
eigenvalue.

• 7 other measurements on fully 
closed configurations where 
foils were removed to decrease 
reactivity (15, 14, 13, 12, 11, 10, 
and 5 foils). 

o Used to vary reactivity over 
large range.
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Calculation - Methods 

• Baseline simulations were 
completed on each 
experimentally measured 
configuration. 

• These simulations are designed 
to be linear to the reactivity 
determined from α.

• All simulations completed 
using MCNP kcode, which is 
subsequently converted to 
reactivity.

• A modified reactivity formula is 
used to determine the reactivity 
differences between the 
simulation and the critical 
experimental configuration.

• 𝝆𝝆 = 𝒌𝒌𝒆𝒆𝒇𝒇𝒇𝒇−𝒌𝒌𝒆𝒆𝒇𝒇𝒇𝒇(𝑫𝑫𝑫𝑫)
𝒌𝒌𝒆𝒆𝒇𝒇𝒇𝒇𝒌𝒌𝒆𝒆𝒇𝒇𝒇𝒇 𝑫𝑫𝑫𝑫 𝜷𝜷𝒆𝒆𝒇𝒇𝒇𝒇

• This equation determines the 
change in reactivity between the 
MCNP deck configured like the 
experiment and the experiment. 
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Calculation - Methods 

Definition of α method.
• Calculates values from the 

derived definition of α.
• Takes as long as a converging 

kcode MCNP® simulation.
• Performed as preliminary study 

of the value of α.

• 𝜶𝜶 = 𝒌𝒌𝒐𝒐−𝟏𝟏
𝒍𝒍

• Modified Version suggested by 
MCNP developers:

• 𝜶𝜶 = 𝒌𝒌𝒐𝒐−𝒌𝒌𝒆𝒆𝒇𝒇𝒇𝒇(𝑫𝑫𝑫𝑫)
𝒍𝒍

Likeness to experiment method.
• Uses particle tracking to store 

the absorption events in He3 and 
the time at which they occurred.

• Data is analyzed identically to 
the experimental data.

• Must be run is source mode with 
no variance reduction.

• Performed after the experiment 
for comparison.

• 𝒐𝒐 𝒕𝒕 = 𝑨𝑨 + 𝑩𝑩𝒆𝒆𝜶𝜶𝒕𝒕

Two calculational methods are used for comparison during this work.
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Calculation – Godiva IV 

• Benchmark model of Godiva IV 
was updated.

• Control rods in this model were 
moved in 100 mil increments for 
the full range of travel. 

• The safety block was moved in 
500 mil increments covering the 
full range of travel.

• Because no experiments were 
performed, only the first 
computational method was 
used.
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Calculation – Godiva IV cont. 



Los Alamos National Laboratory

2/26/2018   |   35

Calculation – Polyethylene Class Foils 

• MCNP deck from the design 
process was used for 
simulations.

• Configurations with 15-5 foils 
were considered. Including the 
cases not experimentally 
measured.

• Simulations using both 
methods described were 
performed on all cases.
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Calculation – Polyethylene Class Foils cont. 
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Calculation – Polyethylene Class Foils cont. 
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Analysis – The Method

• List-mode data is processed to 
be manipulated by specifically 
designed programs which 
determine α.

• Data is reduced from initial 
form.

• Bins list-mode data based on 
time differences between 
detection events.

• This binning produces a decay 
histogram (if the system is sub-
prompt critical).

• This histogram is fit using a 
non-linear exponential fit.
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Analysis – The Code  

• Initial parameters for the code 
are set using previous 
experience.

0

5000

10000

15000

20000

25000

30000

0 0.001 0.002 0.003 0.004 0.005 0.006

C
ou

nt
s

Time (s)

5 Units



Los Alamos National Laboratory

2/26/2018   |   40

Analysis – Uncertainty  

Systematic Uncertainty
• Uncertainty not due to chance, 

but rather introduced into the 
measurement.

• Uncertainty due to unknowns in 
fabrication or construction.

• Things like gaps between 
materials, dimensions, and 
masses of pieces of the 
experiment.

• These type of uncertainties may 
be similar between different 
configurations.

Statistical Uncertainty
• Uncertainty due to natural 

fluctuations.
• If a measurement could be 

performed infinite times the 
average value should match the 
true mean.

• Statistical uncertainty quantifies 
how much the value obtained 
from a single measurement 
could deviate from the true 
mean.
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Analysis – Systematic Uncertainty 

• Determined by perturbing 
MCNP simulation by known 
amounts to determine the 
sensitivity of a system to the 
perturbed parameter.

• This sensitivity can then be 
converted into an uncertainty.
o 𝑈𝑈 = 𝑆𝑆𝑥𝑥Δ𝑥𝑥

o 𝑆𝑆 = Δ𝑘𝑘
𝛿𝛿𝑥𝑥

o U – uncertainty
o Sx- sensitivity
o δx - perturbation of parameter
o Δx – expected variation in x
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Analysis – Systematic Uncertainty cont. 

• For this experiment, many of 
the parameters of interest for 
the systematic uncertainty 
come from HEU-MET-THERM-
001. 
o Same nuclear material 
o Slightly larger polyethylene 

plates.
o Proven similar sensitivity by 

examining parameter with 
largest sensitivity.

Sources of uncertainty addressed.
• Position of detectors in the plate.
• HEU mass
• Polyethylene plate mass
• Polyethylene plate dimensions
• Axial air gap
• These sources of uncertainty 

listed are chosen with expert 
knowledge and experience.

• This list is not intended to be 
comprehensive but rather 
choose the most sensitive 
parameters.
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Analysis – Systematic Uncertainty cont. 

• Although almost certainly 
incorrect each of these 
uncertainty values was 
considered independent and 
the total was quadratically
combined for a single value.

• This will overestimate the 
uncertainty attached to the 
measurement. 

• Example of quadratic 
combination on the right.

• 𝛼𝛼 = 𝑘𝑘𝑝𝑝−𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑙𝑙

• 𝛿𝛿𝛼𝛼 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑘𝑘𝑝𝑝

𝛿𝛿𝑘𝑘𝑝𝑝
2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝛿𝛿𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙
𝛿𝛿𝛿𝛿

2
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Analysis – Statistical Uncertainty

• In an ideal world, a large 
number of measurements of 
each configuration would have 
been completed.

• In reality, 10 measurements 
were performed on each 
configuration except the 5 foil 
case for the Polyethylene Class 
Foils.

• This is not a large number.

• For the purposes of quantifying 
the statistical uncertainty on the 
measurements, the standard 
deviation was taken on this 
small population.

• Was ~2% for each case.

o Very good.
o Slightly higher on the 12 foil 

case.
• Unintentional ARO during 

measurement.
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Results – Godiva IV 

• Measurements were not able to 
be performed. 

• Decay constants were so fast 
that significant portion of the 
decay was within the system 
dead time.

• Faster detection system will be 
required to perform 
measurements on a system 
with decay constants as fast as 
Godiva IV.
o Rather than obtain a fast 

detection system and perform 
validation on it, a slower system 
was measured.

• Simulation results are given for 
the definition of α method as 
these were performed in a 
preliminary capacity.

• Additionally, Godiva IV may not 
have a large enough range of 
reactivity to perform these 
measurements.
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Results – Godiva IV cont. 
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Results – Polyethylene Class Foils

• Simulations were used as the 
baseline reactivity to be 
compared to other simulations 
and the experimental data.

• kcode MCNP simulations were 
run to determine keff.

• This keff is then converted to 
reactivity using 𝜷𝜷𝒆𝒆𝒇𝒇𝒇𝒇 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐.

Units keff σk ρ ($) σρ ($)

15 0.993 2.6E-4 -0.54 0.03

14 0.976 2.8E-4 -2.66 0.03

13 0.954 2.7E-4 -5.45 0.03

12 0.931 2.5E-4 -8.49 0.03

11 0.905 2.7E-4 -12.08 0.04

10 0.876 2.6E-4 -16.38 0.04

9 0.842 2.6E-4 -21.87 0.04

8 0.802 2.6E-4 -28.78 0.05

7 0.757 2.7E-4 -37.60 0.06

6 0.703 2.4E-4 -49.43 0.06

5 0.642 2.4E-4 -65.48 0.07
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Results – Polyethylene Class Foils cont.

• The systematic uncertainty for 
the system was then 
determined using the perturbed 
parameters previously 
discussed.
o Position of detectors in the plate.
o HEU mass
o Polyethylene plate mass
o Polyethylene plate dimensions
o Axial air gap

• Of these parameters, the 
uncertainty on HEU mass had 
the largest impact on the total 
uncertainty.

• Leads to what seems like a 
rather large uncertainty for the 
first couple data points.

• To reduce this uncertainty, the 
foils would need to be weighed 
on a more sensitive scale such 
that the  standard uncertainty in 
the parameter can be reduced.
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Results – Polyethylene Class Foils cont.

Source of 
Uncertainty

Parameter 
Variation in 
Calculation

Calculated 
Effect of 
Variation

Standard 
Uncertainty of 
Parameter

Standard 
Uncertainty in 
Δkeff

Detector Position 0.393 in ± 0.0012 0.393 in ± 0.0012

HEU Mass 0.5291 g/cm3 ± 0.0055 0.5291 g/cm3 ± 0.0055

Poly Plate Mass 0.00125 g/cm3 ± 0.0014 0.00042 g/cm3 ± 0.0004

Poly Plate Dim. 0.1 in ± 0.0015 0.01/ 3 in ± 0.00009

Axial Air Gap 0.002 in ± 0.0036 0.002/ 3 in ± 0.0021

Total Uncertainty Combined Total: ± 0.0060



Los Alamos National Laboratory

2/26/2018   |   50

Results – Polyethylene Class Foils cont.

Units α (s-1) σα (s-1) ρ ($) σρ ($)

15 -340.4 141.4 -0.71 0.71

14 -745.8 141.4 -2.74 0.72

13 -1253.2 141.7 -5.28 0.72

12 -1759.9 143.0 -7.83 0.74

11 -2352.2 142.1 -10.80 0.76

10 -3063.1 145.7 -14.36 0.81

5 -6830.7 199.3 -33.26 1.25

• Measurements were 
successfully completed on the 
Polyethylene Class Foils for 7 
different configurations.

• 10 measurements were 
completed on each 
configuration.

• Statistical deviation between 
these measurements had a 
standard deviation of ~2%.

• Systematic uncertainty, mostly 
due to uncertainty on the fuel 
drive the uncertainty shown for 
each measurement in the chart 
to the right.
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Results – Polyethylene Class Foils cont.

Units kp σk α (s-1) σα (s-1) ρ ($) σρ ($)

15 0.985 2.7E-4 -307.2 141.6 -0.54 0.71

14 0.968 2.6E-4 -704.4 141.6 -2.53 0.72

13 0.945 2.6E-4 -1235.2 141.6 -5.19 0.72

12 0.923 2.6E-4 -1758.6 141.6 -7.82 0.74

11 0.897 2.6E-4 -2360.5 141.6 -10.84 0.76

10 0.868 2.6E-4 -3041.6 141.6 -14.25 0.79

9 0.834 2.7E-4 -3842.2 141.6 -18.27 0.83

8 0.795 2.5E-4 -4761.8 141.5 -22.88 0.89

7 0.750 2.5E-4 -5802.4 141.5 -28.10 0.96

6 0.697 2.5E-4 -7067.6 141.5 -34.44 1.06

5 0.634 2.4E-4 -8528.6 141.5 -41.77 1.18

Units α (s-1) σα (s-1) ρ ($) σρ ($)

15 -417.8 150.2 -1.10 0.76

14 -842.2 145.4 -3.22 0.74

13 -1483.9 148.4 -6.44 0.76

12 -2060.7 150.0 -9.33 0.79

11 -2791.1 163.3 -13.00 0.88

10 -3753.3 164.7 -17.82 0.93

9 -4878.1 180.5 -23.46 1.05

8 -6084.0 202.8 -29.51 1.22

7 -7283.5 266.9 -35.53 1.56

6 -9362.7 244.4 -45.95 1.61

5 -10689.6 331.4 -52.61 2.04
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Results – Polyethylene Class Foils cont.

• The results from the experiment 
and both simulations can then 
be plotted against the baseline 
reactivity determined through 
kcode MCNP simulation.

• Additionally, a plot of the C/E 
for both experimental methods 
was created to examine each 
method. 

• The likeness to experiment 
method has a fairly constant 
bias of ~20% higher.

• The definition of α method has 
issues near critical.

o Likely because the value of α is 
approaching 0 and small 
deviations are more sensitive.

• The C/E for the 5 foil case is not 
shown in the graph because it 
was much larger for both 
methods. 

o ~1.6 for likeness to experiment, 
~1.2 for the definition of α.
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Results – Polyethylene Class Foils cont.
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Results – Polyethylene Class Foils cont.
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Results – Polyethylene Class Foils cont.

• A study was also completed 
examining the axial flux profile 
to determine if shape changes 
in the flux profile could indicate 
a breakdown of the separability
of the spacial and temporal flux 
distributions.

• It was found that in an integral 
sense (typical flux tallies) there 
is no indication of this 
behavior. 

• Suppressions in the flux shown 
in the graph on the next page 
due to the detection system 
remove perfect symmetry from 
the distribution.
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Results – Polyethylene Class Foils cont.
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Conclusions

• Successful in determining limit to inference of reactivity from prompt 
neutron decay constant.
o Useful for NCERC operations and in the larger market of ADS systems.

• The measurement threshold is experimentally determined to be 
between -65$ < ρ ≤ -16$.

• Computationally the threshold was narrowed down to occur between    
-38$ < ρ ≤ -29$.

• This result is important because it provides a method to determine 
subcritical reactivity without a measurement at delayed critical, and 
without careful restriction of other parameters.

• For more subcritical systems, other methods such as Feynman’s 
Variance-to-Mean method should be applied to determine the system’s 
state.
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Special thanks to the critical experiments team at 
LANL and our operations team in Nevada. Many 

of the members have worked hard along side 
myself to make these measurements a 

possibility.

Los Alamos National 
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Questions?

Los Alamos National 
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Separability

𝟏𝟏
𝒗𝒗
𝜕𝜕𝜕𝜕
𝜕𝜕𝒕𝒕

+ 𝛀𝛀 � 𝛁𝛁 � 𝜕𝜕 + 𝝈𝝈𝜕𝜕 = 𝒒𝒒

𝜕𝜕 𝒓𝒓,𝛀𝛀, E, t = 𝐞𝐞𝜶𝜶𝒕𝒕𝜕𝜕(𝒓𝒓,𝛀𝛀, E)
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